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Abstract—The simplicity and flexibility of the MapReduce
framework have motivated programmers of large scale dis-
tributed data processing applications to develop their applications
using this framework. However, the implementations of this
framework, including Hadoop, do not handle skew in the input
data effectively. Skew in the input data results in poor load
balancing which can swamp the benefits achievable by paral-
lelization of applications on such parallel processing frameworks.
The performance of join operation, which is the most expensive
and most frequently executed operation, is severely degraded in
the presence of heavy skew in the input datasets to be joined.
Hadoop’s implementation of the join operation cannot effectively
handle such skewed joins, attributed to the use of hash parti-
tioning for load distribution. In this work, we introduce “Skew
hANDling Join” (SAND Join) that employs range partitioning
instead of hash partitioning for load distribution. Experiments
show that SAND Join algorithm can efficiently perform joins
on the datasets that are sufficiently skewed. We also compare
the performance of this algorithm with that of Hadoop’s join
algorithms.

I. INTRODUCTION

MapReduce — a software framework developed at Google,
provides a cost-effective, scalable, flexible, and fault-tolerant
distributed software model to develop applications for large
scale distributed data processing across huge clusters of com-
modity machines. MapReduce facilitates efficient processing
of voluminous data in parallel, upto multiples of petabytes [1].
MapReduce takes the responsibility of data distribution, load
balancing, fault-tolerance, job scheduling, and other essential
details of parallel processing. Users of the MapReduce frame-
work have to concentrate only on data processing algorithms
which have to be implemented by users in the map and reduce
functions of the framework.

Map and reduce are the two primitives provided by the
framework for distributed data processing. Users implement
map and reduce functions to be run on mapper and reducer
nodes/machines respectively. The signatures of these primi-
tives for key ‘k’ and value ‘v’ are:

Map : (k1; v1)! [(k2; v2)]

Reduce : (k2; [v2])! [v3]

Data to be processed is available in key-value pairs. The
map function, running on mapper nodes, converts input key-
value pairs of data into intermediate key-value pairs which are

passed over to reducer nodes for further processing. In simple
terms, map phase distributes data among nodes for processing
while the output is produced in the reduce phase.

Due to the ease of development and flexibility provided by
MapReduce, data intensive applications are migrating towards
implementations using the MapReduce framework. Many can-
didate applications of MapReduce require combining data
from multiple sources. However, joining large heterogeneous
datasets using MapReduce is an extremely challenging task.
This is due to the fact that MapReduce is designed to process
a single homogeneous data stream per unit time and hence
does not have an efficient description for joining two parallel
streams. In Hadoop [2] (an open souce implementation of the
MapReduce framework by Apache), some strategies have been
documented for the join operation. These are the Map-side and
Reduce-side join techniques. However, these join algorithms
have inherent limitations. When it comes to joining skewed
datasets, the performance of these join techniques is degraded.

Skew in the distribution of the join attribute’s value can
overshadow the strengths of parallel processing infrastructure.
Skew in the input datasets causes an uneven distribution of
load among the parallel sites where the two datasets are joined.
The consequent variation in the processing time on parallel
sites affects the maximum speedup that can be achieved by
virtue of parallel execution. In their popular research article
“Map-Reduce: A major step backwards” [3], DeWitt and
Stonebraker criticize various aspects of MapReduce, one of
which is its inability to handle skew. They state: “One factor
that Map/Reduce advocates seem to have overlooked is the
issue of skew . . . The problem occurs in the map phase when
there is wide variance in the distribution of records with the
same key. This variance, in turn, causes some reduce instances
to take much longer to run than others, resulting in the exe-
cution time for the computation being the running time of the
slowest reduce instance. The parallel database community has
studied this problem extensively and has developed solutions
that the Map/Reduce community might want to adopt”.

In this work, we present SAND Join algorithm for the
Hadoop implementation of the MapReduce framework. This
algorithm can produce efficient joins when data is highly
skewed. We analyze its performance with respect to the
implementations provided by Hadoop.
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Fig. 1. The HDFS Architecture

II. OVERVIEW OF HADOOP

The Hadoop Distribution of MapReduce is based on Hadoop
Distributed File System (HDFS) [2] — a file-system with
master-slave architecture (shown in Fig. 1). In a Hadoop
cluster of n nodes, one of the nodes is master node refered
as NameNode (NN). Remaining nodes are workers nodes also
referred as DataNodes (DN). The NN maintains metadata
about the FileSystem. Files are broken down into default split
sizes of 64MB and distributed among the DNs. Each split is
replicated on three DNs to ensure fault-tolerance. Jobtrackers
and tasktrackers are the daemons residing on NNs and DNs
respectively to handle jobs and tasks. When a MapReduce job
is submitted to a NN, a jobtracker divides it into m tasks and
assigns a task to each mapper. Following is the sequence of
steps for conversion of input to output on Hadoop:

1) Mapping Phase: Each mapper works on non-
overlapping input splits assigned to it by the NN. The
map instance, to which the input split is assigned,
extracts key and value from each record of the split,
applies a user defined map function on the key-value
pairs, and produces intermediate key-value pairs. The
intermediate results of mappers are written to the local
file-system in a sorted order.

2) Partitioning Phase: A “partitioner” determines the
reducer node to which an intermediate key-value
pair should be directed. The default partitioner ap-
plies a hash function (hash value of key) mod (num-
ber of partitions) on the key of each key-value pair to
allocate a partition number to the key-value pair.

3) Shuffling Phase: Each reduce instance is allocated a
partition to work on by the NN. The NN informs each
reducer about the location of mapper nodes from which
it has to copy the data of its partition into its memory.
This process of moving data to appropriate reducer-
nodes is called “shuffling”.

4) Sorting Phase: After copying the assigned partition into
its memory, each reducer sorts the partition on key-
attribute using merge sort algorithm.

5) Reduce Phase: Each reduce task applies a user-defined
reduce operation (selection, projection, join etc.) on each
group of keys and the result is written to HDFS.

III. RELATED WORK

A few join techniques for MapReduce have been discussed
in the existing MapReduce literature. Hadoop implements
map-side and reduce-side [4], [5] algorithms for joining
datasets. As the name suggests, a reduce-side join is carried
out on reducer nodes. Each mapper node tags every input
tuple of both datasets with its source information and generates
tagged intermediate key-value pairs. These tagged key-value
pairs are shuffled across the network and each reducer node
receives the tagged key-value pairs with same join key attribute
from both datasets to be joined. The join is carried out by each
reducer between the tuples of the two datasets.

In a map-side join, the reduce phase is completely bypassed
and the join is carried out in the map phase. Hadoop de-
fines two variants of the map-side join: a) partitioned join
b) memory-backed join. A map-side partitioned join can be
executed only if the two datasets are already partitioned on the
join key and the keys are in sorted order. Each mapper receives
two similar partitions, one from each dataset, and computes
the join between their tuples. In this case, the shuffling and
sorting cost incurred by the reduce-side join can be avoided
by carrying out the join in the map phase. As opposed to the
partitioned join, a memory-backed join completely copies the
smaller of two datasets into the main memory of each mapper
where an in-memory hash table is built for this dataset. Each
mapper then, on receiving a partition of the second dataset,
probes its tuples against the hash-table of first dataset and
produces joined records.

A modification to the MapReduce framework for the join
operation is presented by Hung-chih et al. [6], called Map-
Reduce-Merge. It introduces a new stage called “merge” where
matching tuples from multiple sources, partitioned and sorted
by map and reduce functions, are merged and joined. Although
this augmented merge stage makes join operation easier, it can
incur an additional overhead for implementation.

The map-side, reduce-side, and map-reduce-merge join al-
gorithms use hash partitioning to distribute datasets among
parallel worker nodes. Using hash partitioning scheme, a hash
function on the distribution attribute, i.e. the join key, assigns
tuples of datasets to parallel sites. However, hash partitioning
is sensitive to the presence of skew in the input data i.e. when a
significant number of tuples of the dataset has the same value
for join attribute. Whenever datasets are distributed among
the parallel processing nodes on the basis of hash partitioning
function, a key that is skewed will be directed to a single
processing node. As a result, the worker nodes handling such
tuples are overloaded with data to be joined. Selection of a
perfect hash function may restrict two different join attribute
values to be hashed into the same partition. However, even
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this ideal hash function will result in a load imbalance since
hash partitioning directs same keys to a single partition and
hence a partition that receives an excessively used key will be
overloaded. Hence, the algorithms using hash partitioning for
data distribution are prone to a degraded performance when the
input datasets to be joined contain skewed distribution keys.
Since all of the Hadoop’s join algorithms, as well as the map-
reduce-merge extension to Hadoop, use hash-partitioning for
data distribution, they suffer from a performance hit in case
of skewed data.

To the best of our knowledge, no work has yet been carried
out to handle skew in Hadoop’s join operation. We present
SAND join algorithm for Hadoop that can effectively handle
joining of skewed datasets.

IV. THE SAND JOIN ALGORITHM

The SAND join algorithm is designed to overcome the
incapability of existing Hadoop join algorithms to perform
skewed joins. A major strength of our methodology is that it
can easily be incorporated in the framework without extensive
design changing. Instead of using hash partitioning, which
directs a skewed key to a single processing node, we use range-
based partitioning which distributes the skewed keys among a
number of processing nodes. Range-based partitioning exploits
the characteristics of data for load balancing; two of such
strategies are simple range partitioning and virtual processor
range partitioning [7].

A. Simple Range-based Partitioning

In range-based partitioning, the domain of join keys is
divided into a number of blocks, called ranges. The number of
ranges is equal to the number of partitions. In the simple range
partitioning, the number of partitions is equal to the number
of processing units (PUs). In case of a heavy skew, allocating
only a sub-range of a single distribution key to one partition
reduces the burden on a single PU. A split vector determines
the boundaries to distribute values among partitions. Given p
PUs, the split vector contains p-1 key entries i.e. fk1, k2, k3,
. . . , kp�1g. From this split vector, each PU is assigned a lower
bound and an upper bound for range partitioning (except the
first and last PUs which do not have lower and upper bounds
respectivley). All the tuples that have their join key attribute
falling in a particular range are sent to the PU associated
with that range. For example, keys�k1 are routed to P U1,
k1<keys�k2 are directed to P U2, and keys > kp�1 find their
way to P Up.

Now the question arises that how this split vector should
be selected? A good split vector can be selected by sampling
the input relations so that an estimated distribution of join
attributes in the data can be obtained. Sampling a sorted input
dataset is one solution. However, sorting a voluminous dataset
takes a significant amount of time. On the other hand, random
sampling of the input dataset provides a better estimate of the
distribution of join keys in the input dataset without the need
to parse the whole input dataset. The random samples not
only determine the degree of skew in data, the samples are

also used for exploiting parallelism and partitioning the data.
The randomly collected samples are stored in a sorted order
in a split table T. Since the size of this sample table is many
folds smaller than the input dataset, sorting T does not take
significant time. A split vector is determined from this sorted
split-table by collecting values after a step size of size(T)/p.

Since the input dataset is randomly sampled, there are fair
chances that the skewed attribute will occur more than once
in the split vector. Let us consider that split vector contains
fk1, k2, k2, k3g for a 5-PU distributed system. Keys � k1

are assigned to P U1 but k1 < keys � k2 can be directed to
either P U2 or P U3. Thus using range partitioning, a skewed
join attribute k2 is distributed among more than one PUs and
hence a single machine is not penalized for the skew. For a
build relation, if a key can be directed to more than one PUs,
a candidate PU is randomly selected and the tuple is sent to
it. Whereas for a probe relation, such key is routed to every
candidate PU, in order to generate every possible join result.

Implementation of Simple Range Partitioner
As discussed earlier, a simple range partitioner partitions
the tuples of the relations into a number of ranges on the
basis of join key attributes. To accommodate the simple range
partitioner in the SAND join algorithm, we replace the default
hash partitioner of Hadoop by our range partitioner. The steps
to partition a build relation using a simple range partitioner
are as follows:

1) In order to sample the input dataset, the NN is directed
to collect samples of the join key attributes from each
input split before the start of the job. We assume that
the join key attributes are randomly distributed over the
input datasets and hence over the input splits. For the
number of samples x specified by user, the NN retrieves
x/y samples from each of the y input splits i.e. equal
number of samples from each input split to form a split-
table T.

2) The split table T is sorted. We now retrieve only p
samples from T, where p is the number of partitions.
This results in a split vector whose entries determine
the boundaries for splitting a dataset into a number of
range.

3) The split vector is written to a file (we call it a sampling
file) and stored in HDFS.

4) This sampling file is distributed to all the mapper nodes
using the Distributed Cache [2] mechanism.

5) Each mapper node uses this sampling file to make
partitioning decisions in the partitioning phase. In its
configure() function (which is called before the start of
any map task), each mapper node reads the sampling
file from the distributed cache and builds a range map.
Range-map is a matrix containing information about the
ranges and their associated partition numbers. Whenever
a mapper reads a (key, value) pair, it checks the range-
map to determine the range to which the key belongs.
For the matching range, the associated partition number
from the range map is allocated to the (key, value) pair.
If a join key attribute belongs to more than one ranges,
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the mapper randomly assigns to this key one of the
candidate partition numbers associated with that range.
The partition number is then encoded with the (key,
value) pair. When this encoded pair is received by the
partitioner, it decodes the value of partition number and
returns it to the framework so that the framework can
direct the (key, value) pair to an appropriate reducer.
Note: We implement a custom partitioner on the top
of Partitioner class to replace the hash partitioning
functionality of the default partitioner by our range-
based partitioner.

To partition the probe relation, steps 1-4 are same as for
partitioning of build relation. The split vector produced by
sampling the build relation is reused for partitioning the probe
relation. Unlike the build relation where a key falling into
more than one partitions is randomly allocated to a candidate
partition, a probe key falling into more than one partitions is
allocated the partition number of all the candidate partitions
for the key. However, the partitioner class can assign only
a single partition number to a key and return this number
to the framework. To override the default behavior, we emit
such (key, value) pair multiple times (i.e. once per candidate
partition), encoding one partition number with each pair. In the
partitioner, the partition number is decoded from the encoded
(key, value) pair and sent to the MapReduce framework which
then instructs an appropriate reducer to pick up the tuple.

B. Virtual Processor Range Partitioner

In the simple range partitioner, each PU handles only one
partition and hence the number of partitions is the same as
the number of PUs. Range partitioning can be enhanced by
making the number of partitions greater than the number of
PUs. Skew can be handled efficiently if data is distributed
among a greater number of partitions. These partitions can
then be assigned to PUs either in a round robin fashion
or PUs can dynamically be fed with partitions as soon as
they finish their earlier workload. The motivation behind this
virtual processor approach is that if data is skewed, having
a large number of partitions spreads the skewed data over
a greater number of partitions. As a result, work gets more
evenly distributed and the system does not suffer from the
inefficiencies caused by skew. The number of partitions in the
virtual processor approach should be an integer multiple of
the number of PUs otherwise it can result in load imbalance.

Considering the example of section IV(A), if we take ‘2’ as
a factor for the virtual processor partitioning, our split vector
will contain 10 instead of 5 splits. The split vector for this
case may have key entries fk1, k2, k2, k2, k3, k4, k5, k6, k7g.
A key falling in a particular range is allocated to its associated
partition e.g. keys � k1 are assigned to partition 1; k1 < keys
� k2 are assigned to partition 2, 3, or 4; k2 < keys � k3 are
allocated to partition 5, and so on. As evident, join keys k2 are
dispersed across three partitions instead of two. This reduces
the accumulation of the skewed key k2 in a single partition.

Implementation of Virtual Processor Range Partitioner
A virtual processor range partitioner (VPR) is implemented

in the same way as the simple range partitioner except that
the number of partitions in VPR is a multiple of the number
of reduce nodes. Hadoop schedules the partitions itself on the
reduce nodes. Initially, it allocates a single partition to each
node. When a node completes the join of one pair of partitions,
the NN allocates a partition from the pool of pending partitions
to the idle reduce node. This enables dynamic load balancing
and hence skew is handled in an effective way.

C. Implementation of SAND Join Algorithm

After replacing the hash partitioner with our range parti-
tioner, the join between two datasets is computed. We provide
two versions of the SAND join algorithm, one implemented
using simple-range partitioner and the other using virtual
processor range partitioner. We perform grace hash-joining [8]
on the datasets to be joined. Following is the sequence of steps
for SAND join algorithm implementation for the join of R and
S (shown in Fig. 2):

� Step 1: Lets assume S is smaller of the two relations and
S is not already partitioned into x partitions on the basis of
the join key. We run a MapReduce job to partition it with
either simple or virtual processor partitioner. Remember
that we have replaced default hash partitioner with range
partitioner.

� Step 2: In a second MapReduce job, we read the input
splits of the outer relation R and pass them through
an identity mapper because we are not required to do
anything in the mapper. We want our data to pass through
the partitioning stage. The partitioning function should
generate x partitions on the join key so that each partition
of R can have a corresponding partition of S containing
the same keys. For this purpose, the partitioning function
for both relations should be the same. Our custom range
partitioner here partitions the relations on the basis of
ranges of keys.

� Step 3: After the partitioning stage, each reducer receives
one partition of the outer relation R. This reducer now
needs the corresponding partition of the relation S which
is stored in HDFS. For each reducer, we determine the
partition number of relation R it is dealing with by
using the mapred.task.partition property of the JobConf
object. This property returns an integer representing the
partition number being handled by the reducer. Using this
partition number, an HDFS path is constructed for the
corresponding partition of the relation S and the partition
from HDFS is loaded.

� Step 4: An in-memory hash-table is built for the loaded
S partition. We want this hash table to be built before any
reduce task is carried out (where we perform the actual
join). Loading of the partition and making of the hash
table is therefore done in the configure() function.

� Step 5: As stated earlier, due to the same partitioning
functions applied, each reducer handles similar partitions
form relations R and S. From its assigned partition of
relation R, each reducer provides the keys and their
associated sets of values to the corresponding reduce



Fig. 2. Custom Range Partitioning for Hadoop

tasks. In each reduce task, the key is probed against the
hash-table. If one or more matches are found in the hash-
table, a join is computed with all the associated values
and the result of the join is written to HDFS.

V. EVALUATION

In this section, we experimentally evaluate the performance
of the join algorithms discussed above for handling different
degrees of skew. To compare the performance, we consider
the absolute runtimes of the algorithms.

A. The Testbed

For the purpose of experimentation, we use a Hadoop cluster
of eight nodes. Out of these eight nodes, six are DNs, one
is NN responsible for managing the distributed file system,
and one is tasktracker node responsible to assign the map and
reduce tasks to DNs. Each node is a Dell Poweredge SC1425
with two Intel Xeon 3.2 GHz CPUs and a 256MB/16GB ECC
DDR-2 400 SDRAM memory chip. The secondary storage
of each node is 80GB SATA drive running at 7200rpm. The
nodes are connected to an HP ProCurve 2650 at a network
bandwidth of 100BaseTx-FD. The cluster contains two racks,
each consisting of three DNs. The racks are connected by a
1Gbps link. On each node Scientific Linux 5.5, Hadoop 0.18,
and Java 1.6 are installed. The block size is the default 64MB.
The size of heap memory is increased to 1024MB. Two map
and two reduce tasks can run on each node, providing a total
capacity of 4 tasks per node.

B. Datasets

We generate datasets such that join key attributes are
distributed randomly over each dataset. For the sake of per-
formance comparison, we construct datasets of cardinalities
2,000,000 with varying degrees of skew. To keep things
simple, we take join key attribute as simple numerical values,
ranging from 1 - 2,000,000. In all skewed datasets, the skewed
join key has the attribute value “1”. The convention used to
represent the datasets is like this: d1 represents an input dataset
that has only a single 1 as the join key. All the other join key
attributes are randomly assigned values from 2 to 2,000,000.
Similarly, d10 represents an input dataset with ten 1s and the

Fig. 3. Time taken by the memory-backed join for varying number of tuples
in the build relation (*DNF=Does Not Finish)

remaining 1,999,990 values are randomly assigned values from
2 to 2,000,000; d100 has 100 1s; d1K has 1000 1s; d20K has
20,000 1s, and so on. We represent a join as, for example,
d1 x d1K to show a join between two input datasets, one
containing a single join attribute with value 1 and the other
consisting of 1000 join attributes having value 1. When we
represent a join as d1 x d10, the first of these datasets is
the build relation and the second is the probe relation. Each
tuple in the datasets consists of a join key, two random date
values, and two random strings. The average size of a tuple
is 80 bytes; the join key occupies 8 bytes. Following are the
conventions used for representing the algorithms.
RJ = Reduce-Side Join
MPJ = Map Side Partitioned Join
MBJ = Memory Backed Join
SAND-R = SAND Join with Simple Range Partitioning
SAND-VP = SAND Join with Virtual Processor Range Parti-
tioning

C. Tests

We conduct experiments to analyze the performance of
Hadoop joins (i.e. map-side partitioned, memory-backed, and
reduce-side joins) and the simple range-based and virtual
processor based SAND join algorithm.

We first carry out an experiment to show a limitation of
memory-backed joins (MBJ). In Fig. 3, we present the results
of the join operation using the memory-backed algorithm for
the build relation of varying number of tuples, keeping the
number of tuples in the probe relation constant. When the
size of build relation gets large (i.e. 10,000,000 records in
Fig. 3), the join operation never comes to an end. This is
because the nodes computing the join run out of the memory
while building an in-memory hash table for such a large
dataset. Therefore, in general, the memory-backed join is not
suitable for computing joins of huge datasets. Due to this
limitation of MBJ algorithm, we do not further consider it
in experimentation.

We now present the performance comparison of the reduce-
side and map-side partitioned join algorithms against SAND
join algorithm while varying the degree of skew in the input
data. The number of partitions for RJ and MPJ is taken to be
12. The SAND-R join algorithm has same number of partitions
as the number of nodes i.e. 6. For the virtual processor range



TABLE I
EXECUTION TIMES FOR JOIN OPERATION WITH SKEW IN BUILD RELATION

Algo. d1 d10K d100K d300K d400K d500K d600K
x x x x x x x
d1 d1 d1 d1 d1 d1 d1

RJ 157 121 98 93 133 135 147
MPJ 193 157 119 113 167 175 180
SAND-R 190 163 127 114 158 153 146
SAND-VP 180 159 123 105 148 133 137

TABLE II
EXECUTION TIMES FOR JOIN OPERATIONS WITH SKEW IN BUILD AND

PROBE RELATIONS

Algo. d300K x d500K x d100K x d300K x
d10 d10 d100 d100

RJ 76 243 350 927
MPJ 69 256 368 896

SAND-R 66 222 359 918
SAND-VP 53 179 340 718

partitioning in the SAND-VP join algorithm, we keep the
factor of virtual processor ‘2’ i.e. the total number of partitions
is 12. We conduct each experiment three times and present
here the mean of those values. The results of join with datasets
of varying skew are presented in Table I and Table II. Table I
shows the results of join in case when only the build relation
is skewed whereas joins in Table II are computed when both
the build and probe relations are skewed.

The results in the tables make it clear that the reduce-
side join performs better than other algorithms in little- or
no- skew situations. This is because all other algorithms
require partitioning of datasets on the join key to accumulate
similar keys of both datasets into partitions with same partition
number. The two corresponding partitions of both datasets are
then joined together in the join stage. Since the reduce-side
join skips this phase of partitioning, its performance is better
than the other two algorithms. However as the skew increases,
the performance of the reduce-side join starts degrading. The
reason is that the keys are distributed among the reducer
nodes (where join takes place) according to the hash code
of the join key. The reduce tasks receiving the skewed keys
are overloaded as compared to the other reduce tasks and
hence the overloaded tasks take more time to compute the join,
thereby degrading the performance, as evident from Table II.

It is clear from Table II that in case of heavy skew, SAND
join algorithm has better performance than reduce-side and
map-side partitioned join. It is also clear that the virtual
processor partitioning approach (SAND-VP) performs the
best among all algorithms because it distributes skewed keys
across a greater number of partitions. The load imbalance is
prevented and the system does not have to wait for the heavy-
hitter nodes to complete the processing. For heavily skewed
joins, the simple range partitioning version (which uses the
same number of partitions as the number of nodes) although
performs better than algorithms using the hash partitioning, its
performance is always lower than that of the virtual processor
partitioning approach. This is because of the fact that the

skewed keys are distributed to a greater number of partitions
by the virtual processor partitioning as compared to the simple
range partitioning approach. As evident from Table I, in case
of little or no-skew, hash-partitioned algorithms (in particular,
RJ algorithm) have better efficiency than range-partitioned
algorithms. For this reason, we modify our algorithm such
that it detects the degree of skew in the samples of input
datasets and dynamically selects an appropriate partitioning
strategy i.e. hash-partitioning in case of little skew and virtual
processor range partitioning strategy for heavily skewed joins.

VI. CONCLUSION

Parallel joins are vulnerable to skew in datasets being
joined. If datasets are sufficiently skewed on some keys, load
imbalances may result. The hash partitioning strategy is found
to be inefficient for load distribution in case of skewed data.
Instead, if range partitioning is employed, the datasets are
distributed among processing nodes on the basis of the charac-
teristics of data itself. The Hadoop algorithms of join operation
do not efficiently handle the joining of sufficiently skewed
datasets since they employ the hash partitioning approach.
In this paper, we presented SAND Join algorithm that is
capable of handling skew in the input datasets by virtue of
range partitioning. Since hash partitioning performs well in
case of non-skewed data and range partitioning has a better
performance when the input data is skewed, our algorithm
dynamically selects an appropriate partitioning strategy on the
basis of the characteristics of input data, determined through
random sampling of data. In case of non-skewed data, hash
partitioning strategy is selected while if significant skew in the
input data is detected, our algorithm selects range partitioning
strategy (i.e. virtual processor approach) for the partitioning
phase.
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